One-step immunoassay for tetrabromobisphenol a using a camelid single domain antibody-alkaline phosphatase fusion protein.
نویسندگان
چکیده
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant, showing widespread environmental and human exposures. A variable domain of the heavy chain antibody (VHH), naturally occurring in camelids, approaches the lower size limit of functional antigen-binding entities. The ease of genetic manipulation makes such VHHs a superior choice to use as an immunoreagent. In this study, a highly selective anti-TBBPA VHH T3-15 fused with alkaline phosphatase (AP) from E. coli was expressed, showing both an integrated TBBPA-binding capacity and enzymatic activity. A one-step immunoassay based on the fusion protein T3-15-AP was developed for TBBPA in 5% dimethyl sulfoxide (DMSO)/phosphate buffered saline (PBS, pH 7.4), with a half-maximum signal inhibition concentration (IC50) of 0.20 ng mL(-1). Compared to the parental VHH T3-15, T3-15-AP was able to bind to a wider variety of coating antigens and the assay sensitivity was slightly improved. Cross-reactivity of T3-15-AP with a set of important brominated analogues was negligible (<0.1%). Although T3-15-AP was susceptible to extreme heat (90 °C), much higher binding stability at ambient temperature was observed in the T3-15-AP-based assay for at least 70 days. A simple pretreatment method of diluting urine samples with DMSO was developed for a one-step assay. The recoveries of TBBPA from urine samples via this one-step assay ranged from 96.7% to 109.9% and correlated well with a high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) method. It is expected that the dimerized fusion protein, VHH-AP, will show promising applications in human exposure and environmental monitoring.
منابع مشابه
Retroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells
Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...
متن کاملCloning and Expression of Recombinant Camelid Single-Domain Antibody in Tobacco
Antibodies provide a suitable tool in fundamental research and their high affinity and specificity make them invaluable for diagnostic and therapeutic applications. A promising alternative to conventional antibodies are the heavy chain antibodies (VHH) of Camelidae having short length, high solubility and stability are preferred to other antibody derivatives. In this study, our goal was product...
متن کاملHeterologous Antigen Selection of Camelid Heavy Chain Single Domain Antibodies against Tetrabromobisphenol A
Tetrabromobisphenol A (TBBPA) is a ubiquitous flame retardant. A high-throughput immunoassay would allow for monitoring of human and environmental exposures as a part of risk assessment. Naturally occurring antibodies in camelids that are devoid of light chain, show great promise as an efficient tool in monitoring environmental contaminants, but they have been rarely used for small molecules. A...
متن کاملAnti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal.
A rapid and sensitive one-step competitive enzyme immunoassay for the detection of FB1 was developed. The anti-idiotypic nanobody-alkaline phosphatase (Ab2β-Nb-AP) was validated by the AP enzyme activity and the properties of bounding to anti-FB1-mAb (3F11) through colorimetric and chemiluminescence analyses. The 50% inhibitory concentration and the detection limit (LOD) of colorimetric enzyme-...
متن کاملAlkaline phosphatase-fused repebody as a new format of immuno-reagent for an immunoassay.
Enzyme-linked immunoassays based on an antibody-antigen interaction are widely used in biological and medical sciences. However, the conjugation of an enzyme to antibodies needs an additional chemical process, usually resulting in randomly cross-linked molecules and a loss of the binding affinity and enzyme activity. Herein, we present the development of an alkaline phosphatase-fused repebody a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 87 9 شماره
صفحات -
تاریخ انتشار 2015